Sixth Semester B.Tech. Degree Examination, June 2015 (2008 Scheme)

08.601 : COMPILER DESIGN (RF)

Time: 3 Hours

Max. Marks: 100

PART - A

Answer all questions.

- Differentiate between compiler and interpreter.
- Differentiate between NFA and DFA.
- 3. What are the merits and demerits of using a multipass compile
- Write a short note on input buffering.
- Explain handle pruning.
- Explain shift-reduce parsing.
- 7. Explain left-factoring elimination, with example.
- 8. What are the conditions to be satisfied by a grammar for being LL(1)?
- 9. Define synthesized and inherited translations.
- 10. Write a note on global optimization.

 $(10\times4=40 \text{ Marks})$

Answer any one full question from each Module.

Module -

- 11. a) Explain the phases of a compiler.
 - b) Construct context free grammar for the following languages.

i)
$$L_1 = \{ a^n b^m c^m d^n \mid n \ge 1 \text{ and } m \ge 1 \}$$

ii)
$$L_2 = \{a^n b^n c^m d^m \mid n \ge 1 \text{ and } m \ge 1\}$$

- 12. a) Explain back patching, in detail.
 - b) Show that the following grammar is ambiguous if 'stat', 'substat' and 'cond' are non-terminals in the given productions that allow them to derive terminal strings: Stat → if cond then substat else stat | if cond then stat

Substat → if cond then substat else stat.

Module - II

13. a) Compute LEADING and TRAILING for the following grammar.

$$S \rightarrow a | \land | (T)$$

b) Develop the recursive descent parser for the above grammar (Part (a)).

OR

14. Construct simple LR parsing table for the following grammar:

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Module - III

15. a) Write quadruples, triples and indirect triples for the expression :

$$-(a + b) * (c - d) - (a + b + c)$$

b) Write a note on the translation of array references.

OR

- 16. a) Write a note on three-address code and quadruples, with examples.
 - b) Write the syntax directed translation scheme for producing postfix notation of a given arithmetic expression (with + and * operators), and give the parse tree (with translations) for the input a + b * c + d.
 (3x20 = 60 Marks)